MLX90640中文API

1. 概述

为了使用MLX90640驱动程序,C项目中应该包含4个文件:

  • MLX90640_I2C_Driver.h — 包含I2C相关函数定义的头文件
  • MLX90640_API.h — 包含MLX90640特定函数定义的头文件
  • MLX90640_API.c —包含MLX90640特定功能的文件(原文是MLX90640_API.cpp
  • (原文中只有3个文件,这里说4个文件,应该是指需要一个MCU硬件I2C或者软件模拟I2C的C驱动程序,详见第2章)

2. I2C驱动

这是I2C通信的驱动程序。用户应该相应地实现这个驱动程序,以便与MLX90640实现适当的I2C。由于这些函数是由MLX90640 API使用的,因此不应该更改函数定义,函数实现应该使用适当的输入和输出。I2C标准首先读取低字节(LSByte),反转数据的端序。注意,驱动程序还负责重建正确的端序。如果更改了这部分代码,则应注意正确地恢复数据。

2.1. I2C驱动函数

I2C驱动有五个主要功能,确保用户MCU和MLX90640之间的正常通信。这些功能的实现需要由用户来完成。但是,保持相同的函数定义非常重要。

2.1.1. void MLX90640_I2CInit(void)

如果需要,这个函数应该用于初始化I2C线路(sda和scl)和I2C硬件模块。I2C线路的初始状态应该是高的。在此函数中生成停止条件还允许重置所有可能正在进行的通信。这可以帮助避免由于初始化过程中错误启动I2C序列而导致的通信失败。

例如:

  1. I2C的初始化应该在程序开始时完成,以确保正确的通信

    main.c

    ​ …定义的内容…

    ​ …MCU 初始化

    MLX90640_I2CInit();

    ​ …

    ​ …MLX90640 通信

    ​ …用户代码

2.1.2. void MLX90640_I2CFreqSet(int freq)

此功能应用于动态更改I2C频率和/或粗设置。它有一个int类型的形参。该参数用于设置硬件I2C模块的工作频率,对于软件I2C驱动,用于设置Wait函数的周期数。当使用I2C硬件模块时,MCU供应商提供的库具有集成的频率更改功能。在这种情况下,应该更改MLX90640 I2C驱动程序,以便它使用库函数来设置频率。在软件I2C驱动程序的情况下(当使用两个通用IOs时),I2CFreqSet函数可以设置一个全局变量,该变量被Wait函数用来设置循环的数量。为了适当地设置频率,用户应该修剪Wait功能,以便在MLX90640设备传输数据时生成的I2C时钟具有所需的频率。

例如:

  1. 使用硬件I2C模块时,将I2C频率设置为1MHz,读取帧数据:

    MLX90640_I2CFreqSet(1000); //在这种情况下,MCU供应商提供的库函数要求int值在KHz -> 1000KHz = 1MHz

  2. 使用软件I2C实现时,将I2C频率设置为400KHz以读取帧数据:

    MLX90640_I2CFreqSet(20); //根据指令周期和单片机时钟的不同,

    ​ //等待函数中的20个周期导致MLX90640在传输数据时生成的scl频率为400KHz

2.1.3. int MLX90640_I2CRead(uint8_t slaveAddr,uint16_t startAddress, uint16_t nMemAddressRead, uint16_t *data)

该函数从给定地址开始从选定的MLX90640设备存储器中读取所需数量的字,并将数据存储在用户定义的MCU存储器位置中。请注意,当I2C读通信正在进行时,地址位置正在自动增加,但是如果发起了新的读通信,地址将被重置。因此,如果应该在多个I2C读命令中转储大内存,则应该特别注意使用适当的起始地址。如果返回值为0,表示通信成功;如果返回值为-1,表示通信过程中发生NACK。该函数需要以下参数:

  • uint8_t slaveAddr — MLX90640设备从地址(默认从地址为0x33)
  • uint16_t startAddress — 要从MLX90640存储器中读取的第一个地址。MLX90640 EEPROM位于地址范围0x2400至0x273F, MLX90640 RAM位于地址范围0x0400至0x073F。
  • uint16_t nMemAddressRead — 要从MLX90640存储器中读取的16位字的数目
  • uint16_t *data — 指向用户想要存储数据的MCU存储器位置的指针

例如:

  1. 读取单个EEPROM值- MLX90640设置的MLX90640设备与从地址0x33:

    1
    2
    uint16_t eeValue;
    MLX90640_I2CRead (0x33, 0x240C, 1, &eeValue); // EEPROM 0x240C cell值存储在eeValue中
  2. 读取从地址为0x33的MLX90640设备的整帧数据:

    1
    2
    static uint16_t frameData[832];
    MLX90640_I2CRead(0x33, 0x0400, 832, frameData);//帧数据存储在frameData数组中

2.1.4. int MLX90640_I2CWrite(uint8_t slaveAddr,uint16_t writeAddress, uint16_t data)

该函数将16位值写入所选MLX90640设备的所需内存地址。该函数在写操作完成后回读数据,如果写成功返回0,如果在通信过程中发生NACK返回-1,如果内存中的数据与预期的数据不相同返回-2。需要设置的参数如下:

  • uint8_t slaveAddr — MLX90640设备从地址(默认从地址为0x33)
  • uint16_t writeAddress — 要写入数据的MLX90640内存地址
  • uint16_t data — 要写入MLX90640内存地址的数据

例如:

  1. 写入设置- MLX90640设置的MLX90640设备与从地址0x33:

    1
    2
    3
    int status;
    status = MLX90640_I2CWrite(0x33, 0x800D, 0x0901); //所需的设置被写入地址0x800D
    //如果写入成功,变量状态为0。

2.1.5. int MLX90640_I2CGeneralReset(void)

这个函数应该实现I2C的标准复位条件。根据I2C规范,复位条件是发送0x06到地址0x00。如果通信成功,该函数返回0;如果在通信过程中发生了NAK,则返回-1。注意,这个函数将重置总线上支持它的所有设备。

例如:

  1. 复位总线上的所有设备:

    1
    2
    3
    int status;
    status = MLX90640_I2CGeneralReset(); //复位MLX90640设备
    //如果通信成功,变量状态为0。

3. MLX90640 API

这是MLX90640设备的驱动程序。用户不应该更改这个驱动程序。

3.1. MLX90640 配置函数

3.1.1. int MLX90640_SetResolution(uint8_t slaveAddr, uint8_t resolution);

该函数在适当的寄存器中写入所需的分辨率值(0x00到0x03),以便更改具有给定从地址的MLX90640设备的当前分辨率。注意,上电复位后,分辨率将恢复到存储在EEPROM中的分辨率。如果写入成功,返回值为0,如果通信过程中发生NACK,返回值为-1,如果写入值与预期值不相同,返回值为-2。

  • uint8_t resolution — MLX90640的当前分辨率
    • 0x00 - 16位分辨率
    • 0x01 - 17位分辨率
    • 0x02 - 18位分辨率
    • 0x03 - 19位分辨率

例如:

  1. 设置从地址0x33的MLX90640设备以19位分辨率工作:

    1
    2
    Int status;
    status = MLX90640_SetResolution (0x33,0x03);

3.1.2. int MLX90640_GetCurResolution(uint8_t slaveAddr);

该函数返回具有给定从属地址的MLX90640设备的当前分辨率。请注意,当前分辨率可能与该设备的EEPROM中设置的分辨率不同。如果结果为-1,说明在通信过程中发生了NACK,这不是一个有效的解析数据。

  • uint8_t slaveAddr — MLX90640设备从地址(默认从地址为0x33)

例如:

  1. 从从地址0x33的MLX90640设备获取当前分辨率,该设备使用19位分辨率,但在EEPROM中编程为16位分辨率:

    1
    2
    3
    int curResolution;
    curResolution = MLX90640_GetCurResolution (0x33);
    //curResolution = 0x03(19位),因为这是设备正在使用的实际分辨率

3.1.3. int MLX90640_SetRefreshRate(uint8_t slaveAddr, uint8_t refreshRate);

该函数在适当的寄存器中写入所需的刷新率值(0x00到0x07),以便更改具有给定从地址的MLX90640设备的当前刷新率。注意,上电复位后,刷新率将恢复到存储在EEPROM中的刷新率。如果写入成功,返回值为0,如果通信过程中发生NACK,返回值为-1,如果写入值与预期值不相同,返回值为-2。

  • uint8_t slaveAddr — MLX90640设备从地址(默认从地址为0x33)
  • uint8_t refreshRate — MLX90640设备当前的刷新率
    • 0x00 – 0.5Hz
    • 0x01 – 1Hz
    • 0x02 – 2Hz
    • 0x03 – 4Hz
    • 0x04 – 8Hz
    • 0x05 – 16Hz
    • 0x06 – 32Hz
    • 0x07 – 64Hz

例如:

  1. 设置从地址0x33的MLX90640设备以16Hz刷新率工作:

    1
    2
    int status;
    status = MLX90640_SetRefreshRate (0x33,0x05);

3.1.4. int MLX90640_GetRefreshRate(uint8_t slaveAddr);

该函数返回具有给定从属地址的MLX90640设备的当前刷新率。请注意,当前的刷新率可能与该设备的EEPROM中设置的刷新率不同。如果结果为-1,则在通信期间发生了NACK,这不是有效的刷新率数据。

3.1.5. int MLX90640_GetSubPageNumber(uint16_t *frameData);

这个函数返回MLX90640设备选定帧数据的子页面。

  • uint16_t *frameData — 指向已经获取的MLX90640帧数据的指针

例如:

  1. 获取MLX90640设备选定帧数据的子页面:

    1
    2
    3
    static int mlx90640Frame[834];
    int Subpage;
    Subpage = MLX90640_GetSubPageNumber(mlx90640Frame); // Subpage = 1,因为这是该帧的实际子页面编号

3.1.6. int MLX90640_SetInterleavedMode(uint8_t slaveAddr);

该函数将具有给定从地址的MLX90640设备设置为交错模式。注意,上电复位后,模式将恢复到存储在EEPROM中的模式。如果写入成功,返回值为0,如果通信过程中发生NACK,返回值为-1,如果写入值与预期值不相同,返回值为-2。

3.1.7. int MLX90640_SetChessMode(uint8_t slaveAddr);

该函数将具有给定从属地址的MLX90640设备设置为象棋模式。注意,上电复位后,模式将恢复到存储在EEPROM中的模式。如果写入成功,返回值为0,如果通信过程中发生NACK,返回值为-1,如果写入值与预期值不相同,返回值为-2。

3.1.8. int MLX90640_GetCurMode(uint8_t slaveAddr);

该函数返回MLX90640设备的工作模式。

  • uint8_t slaveAddr — MLX90640设备从地址(默认从地址为0x33)

例如:

  1. 获取从地址为0x33的MLX90640设备的工作模式:

    1
    2
    3
    int mode;
    mode = MLX90640_GetCurMode (0x33);
    //如果设置了交错模式,Mode = 0;如果设置了象棋模式Mode = 1。

3.2. MLX90640的预处理函数

这些API函数通常只在上电复位后调用一次,以提取正确计算温度所需的所有参数

3.2.1. int MLX90640_DumpEE(uint8_t slaveAddr, uint16_t *eeData);

该函数从具有给定从地址的MLX90640设备读取所有必要的EEPROM数据到用户定义的MCU存储器位置(Dump 转储)。为保证正常运行,分配的内存至少应为832个字。如果结果是-1,在通信期间发生了NACK,这不是一个有效的EEPROM数据。

3.2.2. int MLX90640_ExtractParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);

该函数从给定的EEPROM数据数组中提取参数,并将值存储为MLX90640_API.h中定义的类型。提取(Extract)参数(Parameters)后,不再需要EEPROM数据,其存储的内存可以重复使用。如果返回值为-7,则指定位置的EEPROM数据不是有效的MLX90640 EEPROM,并且参数提取被中止。

  • uint16_t *eeData — 指向数组的指针,该数组包含要从中提取参数的EEPROM
  • *paramsMLX90640 *mlx90640 *— 指向类型为paramsMLX90640的变量的指针,在该变量中存储提取的参数。注意,如果在线上有多个MLX90640设备,则可以使用paramsMLX90640类型的数组

例如:

  1. 从MLX90640设备的EEPROM中提取参数:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    unsigned char slaveAddress;
    static uint16_t eeMLX90640[832];
    paramsMLX90640 mlx90640;
    int status;
    status = MLX90640_DumpEE (slaveAddress, eeMLX90640);
    //参数从存储在eeMLX90640数组中的EEPROM数据中提取,并存储在类型为paramsMLX90640的mlx90640变量中
    status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);

    /*
    typedef struct
    {
    int16_t kVdd;
    int16_t vdd25;
    float KvPTAT;
    float KtPTAT;
    uint16_t vPTAT25;
    float alphaPTAT;
    int16_t gainEE;
    float tgc;
    float cpKv;
    float cpKta;
    uint8_t resolutionEE;
    uint8_t calibrationModeEE;
    float KsTa;
    float ksTo[5];
    int16_t ct[5];
    uint16_t alpha[768];
    uint8_t alphaScale;
    int16_t offset[768];
    int8_t kta[768];
    uint8_t ktaScale;
    int8_t kv[768];
    uint8_t kvScale;
    float cpAlpha[2];
    int16_t cpOffset[2];
    float ilChessC[3];
    uint16_t brokenPixels[5];
    uint16_t outlierPixels[5];
    } paramsMLX90640;
    */

3.3. MLX90640的数据采集函数

确保正确数据采集的API函数。

3.3.1 int MLX90640_SynchFrame(uint8_t slaveAddr);

该函数等待具有给定从属地址的MLX90640设备可用的新数据。该函数的目的是与MLX90640设备同步,以便在数据可用后立即启动数据采集。这将增加在获得新数据之前的可用读取时间。当数据采集和信号处理所需的时间与传感器的刷新时间相当时,该功能特别有用。建议在读取第一帧之前使用帧同步。对于某些系统来说,每隔一段时间重新同步一次可能会有所帮助。这些同步的速率取决于数据处理时间和传感器刷新时间之间的关系。数据处理时间越快,同步速率越慢。如果结果为-1,说明通信过程中发生了NACK,很可能同步失败。请注意,如果在调用函数时已经有新的可用数据,它将被忽略。

3.3.2. int MLX90640_TriggerMeasurement(uint8_t slaveAddr);

该功能使用I2C标准中描述的global reset命令。如果结果是-2,通信过程中发生了NAK,如果结果是-2,内存写入失败,如果结果是-9,触发不成功,如果结果是0 -触发了测量。触发后,设备总是先测量子页面0,然后再测量子页面1。请注意,此函数将重置支持该命令的同一I2C总线上的所有设备。

3.3.3 int MLX90640_GetFrameData(uint8_t slaveAddr, uint16_t *frameData);

该函数从具有给定从地址的MLX90640设备读取所有必要的帧数据到用户定义的MCU存储器位置。为保证正常运行,分配的内存至少应为834个字。如果结果为-1,说明在通信过程中发生了NACK,这不是一个有效的帧数据,否则如果结果为-8,说明数据在一定时间内无法获取,帧数据损坏-最有可能的原因是I2C频率太低,否则结果是获取数据的子页面。

3.4. MLX90640的计算相关函数

为了得到正确计算的温度,应该按一定顺序调用的API函数。

3.4.1 float MLX90640_GetVdd(uint16_t *frameData, const paramsMLX90640 *params);

该函数从给定的MLX90640帧数据和提取的参数返回当前Vdd(电压,eg: 3.3V)。结果是一个浮点数。

3.4.2 float MLX90640_GetTa(uint16_t *frameData, const paramsMLX90640 *params);

该函数返回在给定MLX90640帧数据和提取的参数中测量的当前Ta(温度,eg:27.18℃)。结果是一个浮点数。

3.4.3 void MLX90640_CalculateTo(uint16_t *frameData, const paramsMLX90640 *params, float emissivity, float tr, float *result);

该函数根据从MLX90640设备读取的帧数据-frame data、为该特定设备提取的参数-parameters和用户定义的发射率-emissivity 反射温度-reflected Temperature,计算帧中所有768个像素的对象温度。为保证正常运行,分配的内存至少应为768个字。

注意:如果不需要绝对温度值,可以使用MLX90640_GetImage()函数代替。在这种情况下,不应该调用MLX90640_ CalculateTo()函数。

  • uint16_t *frameData — 指向用户想要存储帧数据的MCU内存位置的指针
  • paramsMLX90640 *params— 指向MCU内存位置的指针,其中存储了MLX90640设备已提取的参数
  • float emissivity— 发射率由用户定义。发射率是被测物体的一种特性
  • float tr— 反射温度由用户定义。如果物体的发射率小于1,则可能有一些温度从物体反射。为了补偿这一点,用户应该输入这个反射温度。可以使用传感器环境温度,但可能需要根据外壳进行一些转换。对于露天的MLX90640,温度变化为-8°C。
  • float *result— 指向用户希望存储对象温度数据的MCU内存位置的指针

例如:

  1. 计算一帧内所有像素点的物体温度,物体发射率为0.95,反射温度为23.15℃(由用户测量):

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    float emissivity = 0.95;
    float tr;
    unsigned char slaveAddress;
    static uint16_t eeMLX90640[832];
    static uint16_t mlx90640Frame[834];
    paramsMLX90640 mlx90640;
    static float mlx90640To[768];
    int status;
    status = MLX90640_DumpEE (slaveAddress, eeMLX90640);
    status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);
    status = MLX90640_GetFrameData (0x33, mlx90640Frame );
    tr = 23.15;
    //一个帧中所有768个像素的对象温度存储在mlx90640To数组中
    MLX90640_CalculateTo(mlx90640Frame, &mlx90640, emissivity, tr, mlx90640To);
  2. 计算一帧内所有像素点的物体温度,物体发射率为0.95,反射温度为传感器环境温度:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    #define TA_SHIFT 8 // MLX90640设备在露天的默认位移
    float emissivity = 0.95;
    float tr;
    unsigned char slaveAddress;
    static uint16_t eeMLX90640[832];
    static uint16_t mlx90640Frame[834];
    paramsMLX90640 mlx90640;
    static float mlx90640To[768];
    int status;
    status = MLX90640_DumpEE (slaveAddress, eeMLX90640);
    status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);
    status = MLX90640_GetFrameData (0x33, mlx90640Frame );
    tr = MLX90640_GetTa(mlx90640Frame, &mlx90640) – TA_SHIFT;//基于传感器环境温度的反射温度
    //一个帧中所有768个像素的对象温度存储在mlx90640To数组中
    MLX90640_CalculateTo(mlx90640Frame, &mlx90640, emissivity, tr, mlx90640To);

3.4.4 void MLX90640_GetImage(uint16_t *frameData, const paramsMLX90640 *params, float *result);

该函数根据从MLX90640设备读取的帧数据和为该特定设备提取的参数计算帧中所有768个像素的值。为保证正常运行,分配的内存至少应为768个字。该值越小,像素视场中的温度越低。注意,这些都是带符号的值。

注意:如果需要绝对温度值,则应该使用MLX90640_CalculateTo()。在这种情况下,不应该调用函数MLX90640_GetImage()。

  • uint16_t *frameData — 指向用户希望存储帧数据的MCU内存位置的指针
  • *paramsMLX90640 *params *— 指向MCU内存位置的指针,其中存储了MLX90640设备已提取的参数
  • *float *result *— 指向用户希望存储对象温度数据的MCU内存位置的指针

例如:

  1. 获取一个帧的图像:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    unsigned char slaveAddress;
    static uint16_t eeMLX90640[832];
    static uint16_t mlx90640Frame[834];
    paramsMLX90640 mlx90640;
    static float mlx90640Image[768];
    int status;
    status = MLX90640_DumpEE (slaveAddress, eeMLX90640);
    status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);
    status = MLX90640_GetFrameData (0x33, mlx90640Frame );
    MLX90640_GetImage(mlx90640Frame, &mlx90640, mlx90640Image);
    //从帧数据中提取图像并存储在mlx90640Image数组中

3.5. MLX90640支持图像处理的函数

可用于图像处理的API函数。

3.5.1 void MLX90640_BadPixelsCorrection(uint16_t *pixels, float *to, int mode, paramsMLX90640 *params);

这个函数修正了坏像素和/或异常像素的值。像素数组中所有像素索引的值(直到读取到值0xFFFF)将使用不同的过滤方法进行修正。在paramsMLX90640数组brokenPixels和outlierPixels中已经报告了标记为坏像素或异常像素的像素。请注意,可以通过创建一个包含那些像素索引的自定义列表来选择要修正的像素。列表应该以0xFFFF结尾。

  • uint16_t *pixels — 指向包含待校正像素的数组的指针。

    注意:数组应该包含像素的索引(0到767),0xFFFF应该用作终止值

  • float *to — 指向对象温度值数组的指针。通过覆盖对应像素指数的当前温度值来校正像素值

  • int mode — MLX90640设备当前的工作模式

    • 0 — 交错模式
    • 1 — 棋盘模式
  • paramsMLX90640 *params — 指向MCU内存位置的指针,其中存储了MLX90640设备已提取的参数

例如:

  1. 在一帧中修正对象温度为所有像素被标记为坏的或异常的:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    float emissivity = 0.95;
    float tr;
    unsigned char slaveAddress;
    static uint16_t eeMLX90640[832];
    static uint16_t mlx90640Frame[834];
    paramsMLX90640 mlx90640;
    static float mlx90640To[768];
    int status;
    status = MLX90640_DumpEE (slaveAddress, eeMLX90640);
    status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);
    mode = MLX90640_GetCurMode(slaveAddress);
    status = MLX90640_GetFrameData (0x33, mlx90640Frame );
    tr = 23.15;
    MLX90640_CalculateTo(mlx90640Frame, &mlx90640, emissivity, tr, mlx90640To);
    MLX90640_BadPixelsCorrection((&mlx90640)->brokenPixels, mlx90640To, mode, &mlx90640);
    MLX90640_BadPixelsCorrection((&mlx90640)->outlierPixels, mlx90640To, mode, &mlx90640);
    //修正值在mlx90640To数组中
  2. 使用自定义列表修正所有所需像素的对象温度:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    float emissivity = 0.95;
    float tr;
    unsigned char slaveAddress;
    static uint16_t eeMLX90640[832];
    static uint16_t mlx90640Frame[834];
    paramsMLX90640 mlx90640;
    static float mlx90640To[768];
    static uint16_t badPixels[5] = {0, 35, 150, 500, 0xFFFF}; //create a custom list of pixels to correct
    int status;
    status = MLX90640_DumpEE (slaveAddress, eeMLX90640);
    status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);
    mode = MLX90640_GetCurMode(slaveAddress);
    status = MLX90640_GetFrameData (0x33, mlx90640Frame );
    tr = 23.15;
    MLX90640_CalculateTo(mlx90640Frame, &mlx90640, emissivity, tr, mlx90640To);
    MLX90640_BadPixelsCorrection(badPixels, mlx90640To, mode, &mlx90640);
    //修正值在mlx90640To数组中

4. 历史版本表

  • 我不写了

5. 程序源码

原文中没有本章节

MLX90640_I2C_Driver.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
* @copyright (C) 2017 Melexis N.V.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef _MLX90640_I2C_Driver_H_
#define _MLX90640_I2C_Driver_H_

#include <stdint.h>
#include "MLX90640_API.h"

extern void MLX90640_I2CInit(void);
extern int MLX90640_I2CGeneralReset(void);
extern int MLX90640_I2CRead(uint8_t slaveAddr,uint16_t startAddress, uint16_t nMemAddressRead, uint16_t *data);
extern int MLX90640_I2CWrite(uint8_t slaveAddr,uint16_t writeAddress, uint16_t data);
extern void MLX90640_I2CFreqSet(int freq);
#endif

MLX90640_API.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/**
* @copyright (C) 2017 Melexis N.V.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef _MLX90640_API_H_
#define _MLX90640_API_H_

#define MLX90640_NO_ERROR 0
#define MLX90640_I2C_NACK_ERROR 1
#define MLX90640_I2C_WRITE_ERROR 2
#define MLX90640_BROKEN_PIXELS_NUM_ERROR 3
#define MLX90640_OUTLIER_PIXELS_NUM_ERROR 4
#define MLX90640_BAD_PIXELS_NUM_ERROR 5
#define MLX90640_ADJACENT_BAD_PIXELS_ERROR 6
#define MLX90640_EEPROM_DATA_ERROR 7
#define MLX90640_FRAME_DATA_ERROR 8
#define MLX90640_MEAS_TRIGGER_ERROR 9

#define BIT_MASK(x) (1UL << (x))
#define REG_MASK(sbit,nbits) ~((~(~0UL << (nbits))) << (sbit))

#define MLX90640_EEPROM_START_ADDRESS 0x2400
#define MLX90640_EEPROM_DUMP_NUM 832
#define MLX90640_PIXEL_DATA_START_ADDRESS 0x0400
#define MLX90640_PIXEL_NUM 768
#define MLX90640_LINE_NUM 24
#define MLX90640_COLUMN_NUM 32
#define MLX90640_LINE_SIZE 32
#define MLX90640_COLUMN_SIZE 24
#define MLX90640_AUX_DATA_START_ADDRESS 0x0700
#define MLX90640_AUX_NUM 64
#define MLX90640_STATUS_REG 0x8000
#define MLX90640_INIT_STATUS_VALUE 0x0030
#define MLX90640_STAT_FRAME_MASK BIT_MASK(0)
#define MLX90640_GET_FRAME(reg_value) (reg_value & MLX90640_STAT_FRAME_MASK)
#define MLX90640_STAT_DATA_READY_MASK BIT_MASK(3)
#define MLX90640_GET_DATA_READY(reg_value) (reg_value & MLX90640_STAT_DATA_READY_MASK)

#define MLX90640_CTRL_REG 0x800D
#define MLX90640_CTRL_TRIG_READY_MASK BIT_MASK(15)
#define MLX90640_CTRL_REFRESH_SHIFT 7
#define MLX90640_CTRL_REFRESH_MASK REG_MASK(MLX90640_CTRL_REFRESH_SHIFT,3)
#define MLX90640_CTRL_RESOLUTION_SHIFT 10
#define MLX90640_CTRL_RESOLUTION_MASK REG_MASK(MLX90640_CTRL_RESOLUTION_SHIFT,2)
#define MLX90640_CTRL_MEAS_MODE_SHIFT 12
#define MLX90640_CTRL_MEAS_MODE_MASK BIT_MASK(12)

#define MLX90640_MS_BYTE_SHIFT 8
#define MLX90640_MS_BYTE_MASK 0xFF00
#define MLX90640_LS_BYTE_MASK 0x00FF
#define MLX90640_MS_BYTE(reg16) ((reg16 & MLX90640_MS_BYTE_MASK) >> MLX90640_MS_BYTE_SHIFT)
#define MLX90640_LS_BYTE(reg16) (reg16 & MLX90640_LS_BYTE_MASK)
#define MLX90640_MSBITS_6_MASK 0xFC00
#define MLX90640_LSBITS_10_MASK 0x03FF
#define MLX90640_NIBBLE1_MASK 0x000F
#define MLX90640_NIBBLE2_MASK 0x00F0
#define MLX90640_NIBBLE3_MASK 0x0F00
#define MLX90640_NIBBLE4_MASK 0xF000
#define MLX90640_NIBBLE1(reg16) ((reg16 & MLX90640_NIBBLE1_MASK))
#define MLX90640_NIBBLE2(reg16) ((reg16 & MLX90640_NIBBLE2_MASK) >> 4)
#define MLX90640_NIBBLE3(reg16) ((reg16 & MLX90640_NIBBLE3_MASK) >> 8)
#define MLX90640_NIBBLE4(reg16) ((reg16 & MLX90640_NIBBLE4_MASK) >> 12)

#define POW2(x) pow(2, (double)x)

#define SCALEALPHA 0.000001

typedef struct
{
int16_t kVdd;
int16_t vdd25;
float KvPTAT;
float KtPTAT;
uint16_t vPTAT25;
float alphaPTAT;
int16_t gainEE;
float tgc;
float cpKv;
float cpKta;
uint8_t resolutionEE;
uint8_t calibrationModeEE;
float KsTa;
float ksTo[5];
int16_t ct[5];
uint16_t alpha[768];
uint8_t alphaScale;
int16_t offset[768];
int8_t kta[768];
uint8_t ktaScale;
int8_t kv[768];
uint8_t kvScale;
float cpAlpha[2];
int16_t cpOffset[2];
float ilChessC[3];
uint16_t brokenPixels[5];
uint16_t outlierPixels[5];
} paramsMLX90640;

int MLX90640_DumpEE(uint8_t slaveAddr, uint16_t *eeData);
int MLX90640_SynchFrame(uint8_t slaveAddr);
int MLX90640_TriggerMeasurement(uint8_t slaveAddr);
int MLX90640_GetFrameData(uint8_t slaveAddr, uint16_t *frameData);
int MLX90640_ExtractParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
float MLX90640_GetVdd(uint16_t *frameData, const paramsMLX90640 *params);
float MLX90640_GetTa(uint16_t *frameData, const paramsMLX90640 *params);
void MLX90640_GetImage(uint16_t *frameData, const paramsMLX90640 *params, float *result);
void MLX90640_CalculateTo(uint16_t *frameData, const paramsMLX90640 *params, float emissivity, float tr, float *result);
int MLX90640_SetResolution(uint8_t slaveAddr, uint8_t resolution);
int MLX90640_GetCurResolution(uint8_t slaveAddr);
int MLX90640_SetRefreshRate(uint8_t slaveAddr, uint8_t refreshRate);
int MLX90640_GetRefreshRate(uint8_t slaveAddr);
int MLX90640_GetSubPageNumber(uint16_t *frameData);
int MLX90640_GetCurMode(uint8_t slaveAddr);
int MLX90640_SetInterleavedMode(uint8_t slaveAddr);
int MLX90640_SetChessMode(uint8_t slaveAddr);
void MLX90640_BadPixelsCorrection(uint16_t *pixels, float *to, int mode, paramsMLX90640 *params);

#endif

MLX90640_API.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
/**
* @copyright (C) 2017 Melexis N.V.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <MLX90640_I2C_Driver.h>
#include <MLX90640_API.h>
#include <math.h>

static void ExtractVDDParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractPTATParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractGainParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractTgcParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractResolutionParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractKsTaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractKsToParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractAlphaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractOffsetParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractKtaPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractKvPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractCPParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static void ExtractCILCParameters(uint16_t *eeData, paramsMLX90640 *mlx90640);
static int ExtractDeviatingPixels(uint16_t *eeData, paramsMLX90640 *mlx90640);
static int CheckAdjacentPixels(uint16_t pix1, uint16_t pix2);
static float GetMedian(float *values, int n);
static int IsPixelBad(uint16_t pixel,paramsMLX90640 *params);
static int ValidateFrameData(uint16_t *frameData);
static int ValidateAuxData(uint16_t *auxData);

int MLX90640_DumpEE(uint8_t slaveAddr, uint16_t *eeData)
{
return MLX90640_I2CRead(slaveAddr, MLX90640_EEPROM_START_ADDRESS, MLX90640_EEPROM_DUMP_NUM, eeData);
}

int MLX90640_SynchFrame(uint8_t slaveAddr)
{
uint16_t dataReady = 0;
uint16_t statusRegister;
int error = 1;

error = MLX90640_I2CWrite(slaveAddr, MLX90640_STATUS_REG, MLX90640_INIT_STATUS_VALUE);
if(error == -MLX90640_I2C_NACK_ERROR)
{
return error;
}

while(dataReady == 0)
{
error = MLX90640_I2CRead(slaveAddr, MLX90640_STATUS_REG, 1, &statusRegister);
if(error != MLX90640_NO_ERROR)
{
return error;
}
//dataReady = statusRegister & 0x0008;
dataReady = MLX90640_GET_DATA_READY(statusRegister);
}

return MLX90640_NO_ERROR;
}

int MLX90640_TriggerMeasurement(uint8_t slaveAddr)
{
int error = 1;
uint16_t ctrlReg;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &ctrlReg);

if ( error != MLX90640_NO_ERROR)
{
return error;
}

ctrlReg |= MLX90640_CTRL_TRIG_READY_MASK;
error = MLX90640_I2CWrite(slaveAddr, MLX90640_CTRL_REG, ctrlReg);

if ( error != MLX90640_NO_ERROR)
{
return error;
}

error = MLX90640_I2CGeneralReset();

if ( error != MLX90640_NO_ERROR)
{
return error;
}

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &ctrlReg);

if ( error != MLX90640_NO_ERROR)
{
return error;
}

if ((ctrlReg & MLX90640_CTRL_TRIG_READY_MASK) != 0)
{
return -MLX90640_MEAS_TRIGGER_ERROR;
}

return MLX90640_NO_ERROR;
}

int MLX90640_GetFrameData(uint8_t slaveAddr, uint16_t *frameData)
{
uint16_t dataReady = 0;
uint16_t controlRegister1;
uint16_t statusRegister;
int error = 1;
uint16_t data[64];
uint8_t cnt = 0;

while(dataReady == 0)
{
error = MLX90640_I2CRead(slaveAddr, MLX90640_STATUS_REG, 1, &statusRegister);
if(error != MLX90640_NO_ERROR)
{
return error;
}
//dataReady = statusRegister & 0x0008;
dataReady = MLX90640_GET_DATA_READY(statusRegister);
}

error = MLX90640_I2CWrite(slaveAddr, MLX90640_STATUS_REG, MLX90640_INIT_STATUS_VALUE);
if(error == -MLX90640_I2C_NACK_ERROR)
{
return error;
}

error = MLX90640_I2CRead(slaveAddr, MLX90640_PIXEL_DATA_START_ADDRESS, MLX90640_PIXEL_NUM, frameData);
if(error != MLX90640_NO_ERROR)
{
return error;
}

error = MLX90640_I2CRead(slaveAddr, MLX90640_AUX_DATA_START_ADDRESS, MLX90640_AUX_NUM, data);
if(error != MLX90640_NO_ERROR)
{
return error;
}

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);
frameData[832] = controlRegister1;
//frameData[833] = statusRegister & 0x0001;
frameData[833] = MLX90640_GET_FRAME(statusRegister);

if(error != MLX90640_NO_ERROR)
{
return error;
}

error = ValidateAuxData(data);
if(error == MLX90640_NO_ERROR)
{
for(cnt=0; cnt<MLX90640_AUX_NUM; cnt++)
{
frameData[cnt+MLX90640_PIXEL_NUM] = data[cnt];
}
}

error = ValidateFrameData(frameData);
if (error != MLX90640_NO_ERROR)
{
return error;
}

return frameData[833];
}

static int ValidateFrameData(uint16_t *frameData)
{
uint8_t line = 0;

for(int i=0; i<MLX90640_PIXEL_NUM; i+=MLX90640_LINE_SIZE)
{
if((frameData[i] == 0x7FFF) && (line%2 == frameData[833])) return -MLX90640_FRAME_DATA_ERROR;
line = line + 1;
}

return MLX90640_NO_ERROR;
}

static int ValidateAuxData(uint16_t *auxData)
{

if(auxData[0] == 0x7FFF) return -MLX90640_FRAME_DATA_ERROR;

for(int i=8; i<19; i++)
{
if(auxData[i] == 0x7FFF) return -MLX90640_FRAME_DATA_ERROR;
}

for(int i=20; i<23; i++)
{
if(auxData[i] == 0x7FFF) return -MLX90640_FRAME_DATA_ERROR;
}

for(int i=24; i<33; i++)
{
if(auxData[i] == 0x7FFF) return -MLX90640_FRAME_DATA_ERROR;
}

for(int i=40; i<51; i++)
{
if(auxData[i] == 0x7FFF) return -MLX90640_FRAME_DATA_ERROR;
}

for(int i=52; i<55; i++)
{
if(auxData[i] == 0x7FFF) return -MLX90640_FRAME_DATA_ERROR;
}

for(int i=56; i<64; i++)
{
if(auxData[i] == 0x7FFF) return -MLX90640_FRAME_DATA_ERROR;
}

return MLX90640_NO_ERROR;

}

int MLX90640_ExtractParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int error = 0;

ExtractVDDParameters(eeData, mlx90640);
ExtractPTATParameters(eeData, mlx90640);
ExtractGainParameters(eeData, mlx90640);
ExtractTgcParameters(eeData, mlx90640);
ExtractResolutionParameters(eeData, mlx90640);
ExtractKsTaParameters(eeData, mlx90640);
ExtractKsToParameters(eeData, mlx90640);
ExtractCPParameters(eeData, mlx90640);
ExtractAlphaParameters(eeData, mlx90640);
ExtractOffsetParameters(eeData, mlx90640);
ExtractKtaPixelParameters(eeData, mlx90640);
ExtractKvPixelParameters(eeData, mlx90640);
ExtractCILCParameters(eeData, mlx90640);
error = ExtractDeviatingPixels(eeData, mlx90640);

return error;

}

//------------------------------------------------------------------------------

int MLX90640_SetResolution(uint8_t slaveAddr, uint8_t resolution)
{
uint16_t controlRegister1;
uint16_t value;
int error;

//value = (resolution & 0x03) << 10;
value = ((uint16_t)resolution << MLX90640_CTRL_RESOLUTION_SHIFT);
value &= ~MLX90640_CTRL_RESOLUTION_MASK;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);

if(error == MLX90640_NO_ERROR)
{
value = (controlRegister1 & MLX90640_CTRL_RESOLUTION_MASK) | value;
error = MLX90640_I2CWrite(slaveAddr, MLX90640_CTRL_REG, value);
}

return error;
}

//------------------------------------------------------------------------------

int MLX90640_GetCurResolution(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int resolutionRAM;
int error;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);
if(error != MLX90640_NO_ERROR)
{
return error;
}
resolutionRAM = (controlRegister1 & ~MLX90640_CTRL_RESOLUTION_MASK) >> MLX90640_CTRL_RESOLUTION_SHIFT;

return resolutionRAM;
}

//------------------------------------------------------------------------------

int MLX90640_SetRefreshRate(uint8_t slaveAddr, uint8_t refreshRate)
{
uint16_t controlRegister1;
uint16_t value;
int error;

//value = (refreshRate & 0x07)<<7;
value = ((uint16_t)refreshRate << MLX90640_CTRL_REFRESH_SHIFT);
value &= ~MLX90640_CTRL_REFRESH_MASK;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);
if(error == MLX90640_NO_ERROR)
{
value = (controlRegister1 & MLX90640_CTRL_REFRESH_MASK) | value;
error = MLX90640_I2CWrite(slaveAddr, MLX90640_CTRL_REG, value);
}

return error;
}

//------------------------------------------------------------------------------

int MLX90640_GetRefreshRate(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int refreshRate;
int error;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);
if(error != MLX90640_NO_ERROR)
{
return error;
}
refreshRate = (controlRegister1 & ~MLX90640_CTRL_REFRESH_MASK) >> MLX90640_CTRL_REFRESH_SHIFT;

return refreshRate;
}

//------------------------------------------------------------------------------

int MLX90640_SetInterleavedMode(uint8_t slaveAddr)
{
uint16_t controlRegister1;
uint16_t value;
int error;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);

if(error == 0)
{
value = (controlRegister1 & ~MLX90640_CTRL_MEAS_MODE_MASK);
error = MLX90640_I2CWrite(slaveAddr, MLX90640_CTRL_REG, value);
}

return error;
}

//------------------------------------------------------------------------------

int MLX90640_SetChessMode(uint8_t slaveAddr)
{
uint16_t controlRegister1;
uint16_t value;
int error;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);

if(error == 0)
{
value = (controlRegister1 | MLX90640_CTRL_MEAS_MODE_MASK);
error = MLX90640_I2CWrite(slaveAddr, MLX90640_CTRL_REG, value);
}

return error;
}

//------------------------------------------------------------------------------

int MLX90640_GetCurMode(uint8_t slaveAddr)
{
uint16_t controlRegister1;
int modeRAM;
int error;

error = MLX90640_I2CRead(slaveAddr, MLX90640_CTRL_REG, 1, &controlRegister1);
if(error != 0)
{
return error;
}
modeRAM = (controlRegister1 & MLX90640_CTRL_MEAS_MODE_MASK) >> MLX90640_CTRL_MEAS_MODE_SHIFT;

return modeRAM;
}

//------------------------------------------------------------------------------

void MLX90640_CalculateTo(uint16_t *frameData, const paramsMLX90640 *params, float emissivity, float tr, float *result)
{
float vdd;
float ta;
float ta4;
float tr4;
float taTr;
float gain;
float irDataCP[2];
float irData;
float alphaCompensated;
uint8_t mode;
int8_t ilPattern;
int8_t chessPattern;
int8_t pattern;
int8_t conversionPattern;
float Sx;
float To;
float alphaCorrR[4];
int8_t range;
uint16_t subPage;
float ktaScale;
float kvScale;
float alphaScale;
float kta;
float kv;

subPage = frameData[833];
vdd = MLX90640_GetVdd(frameData, params);
ta = MLX90640_GetTa(frameData, params);

ta4 = (ta + 273.15);
ta4 = ta4 * ta4;
ta4 = ta4 * ta4;
tr4 = (tr + 273.15);
tr4 = tr4 * tr4;
tr4 = tr4 * tr4;
taTr = tr4 - (tr4-ta4)/emissivity;

ktaScale = POW2(params->ktaScale);
kvScale = POW2(params->kvScale);
alphaScale = POW2(params->alphaScale);

alphaCorrR[0] = 1 / (1 + params->ksTo[0] * 40);
alphaCorrR[1] = 1 ;
alphaCorrR[2] = (1 + params->ksTo[1] * params->ct[2]);
alphaCorrR[3] = alphaCorrR[2] * (1 + params->ksTo[2] * (params->ct[3] - params->ct[2]));

//------------------------- Gain calculation -----------------------------------

gain = (float)params->gainEE / (int16_t)frameData[778];

//------------------------- To calculation -------------------------------------
mode = (frameData[832] & MLX90640_CTRL_MEAS_MODE_MASK) >> 5;

irDataCP[0] = (int16_t)frameData[776] * gain;
irDataCP[1] = (int16_t)frameData[808] * gain;

irDataCP[0] = irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
if( mode == params->calibrationModeEE)
{
irDataCP[1] = irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
}
else
{
irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
}

for( int pixelNumber = 0; pixelNumber < 768; pixelNumber++)
{
ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2;
chessPattern = ilPattern ^ (pixelNumber - (pixelNumber/2)*2);
conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4) * (1 - 2 * ilPattern);

if(mode == 0)
{
pattern = ilPattern;
}
else
{
pattern = chessPattern;
}

if(pattern == frameData[833])
{
irData = (int16_t)frameData[pixelNumber] * gain;

kta = params->kta[pixelNumber]/ktaScale;
kv = params->kv[pixelNumber]/kvScale;
irData = irData - params->offset[pixelNumber]*(1 + kta*(ta - 25))*(1 + kv*(vdd - 3.3));

if(mode != params->calibrationModeEE)
{
irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern;
}

irData = irData - params->tgc * irDataCP[subPage];
irData = irData / emissivity;

alphaCompensated = SCALEALPHA*alphaScale/params->alpha[pixelNumber];
alphaCompensated = alphaCompensated*(1 + params->KsTa * (ta - 25));

Sx = alphaCompensated * alphaCompensated * alphaCompensated * (irData + alphaCompensated * taTr);
Sx = sqrt(sqrt(Sx)) * params->ksTo[1];

To = sqrt(sqrt(irData/(alphaCompensated * (1 - params->ksTo[1] * 273.15) + Sx) + taTr)) - 273.15;

if(To < params->ct[1])
{
range = 0;
}
else if(To < params->ct[2])
{
range = 1;
}
else if(To < params->ct[3])
{
range = 2;
}
else
{
range = 3;
}

To = sqrt(sqrt(irData / (alphaCompensated * alphaCorrR[range] * (1 + params->ksTo[range] * (To - params->ct[range]))) + taTr)) - 273.15;

result[pixelNumber] = To;
}
}
}

//------------------------------------------------------------------------------

void MLX90640_GetImage(uint16_t *frameData, const paramsMLX90640 *params, float *result)
{
float vdd;
float ta;
float gain;
float irDataCP[2];
float irData;
float alphaCompensated;
uint8_t mode;
int8_t ilPattern;
int8_t chessPattern;
int8_t pattern;
int8_t conversionPattern;
float image;
uint16_t subPage;
float ktaScale;
float kvScale;
float kta;
float kv;

subPage = frameData[833];
vdd = MLX90640_GetVdd(frameData, params);
ta = MLX90640_GetTa(frameData, params);

ktaScale = POW2(params->ktaScale);
kvScale = POW2(params->kvScale);

//------------------------- Gain calculation -----------------------------------

gain = (float)params->gainEE / (int16_t)frameData[778];

//------------------------- Image calculation -------------------------------------

mode = (frameData[832] & MLX90640_CTRL_MEAS_MODE_MASK) >> 5;

irDataCP[0] = (int16_t)frameData[776] * gain;
irDataCP[1] = (int16_t)frameData[808] * gain;

irDataCP[0] = irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
if( mode == params->calibrationModeEE)
{
irDataCP[1] = irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
}
else
{
irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
}

for( int pixelNumber = 0; pixelNumber < 768; pixelNumber++)
{
ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2;
chessPattern = ilPattern ^ (pixelNumber - (pixelNumber/2)*2);
conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4) * (1 - 2 * ilPattern);

if(mode == 0)
{
pattern = ilPattern;
}
else
{
pattern = chessPattern;
}

if(pattern == frameData[833])
{
irData = (int16_t)frameData[pixelNumber] * gain;

kta = params->kta[pixelNumber]/ktaScale;
kv = params->kv[pixelNumber]/kvScale;
irData = irData - params->offset[pixelNumber]*(1 + kta*(ta - 25))*(1 + kv*(vdd - 3.3));

if(mode != params->calibrationModeEE)
{
irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern;
}

irData = irData - params->tgc * irDataCP[subPage];

alphaCompensated = params->alpha[pixelNumber];

image = irData*alphaCompensated;

result[pixelNumber] = image;
}
}
}

//------------------------------------------------------------------------------

float MLX90640_GetVdd(uint16_t *frameData, const paramsMLX90640 *params)
{
float vdd;
float resolutionCorrection;

uint16_t resolutionRAM;

resolutionRAM = (frameData[832] & ~MLX90640_CTRL_RESOLUTION_MASK) >> MLX90640_CTRL_RESOLUTION_SHIFT;
resolutionCorrection = POW2(params->resolutionEE) / POW2(resolutionRAM);
vdd = (resolutionCorrection * (int16_t)frameData[810] - params->vdd25) / params->kVdd + 3.3;

return vdd;
}

//------------------------------------------------------------------------------

float MLX90640_GetTa(uint16_t *frameData, const paramsMLX90640 *params)
{
int16_t ptat;
float ptatArt;
float vdd;
float ta;

vdd = MLX90640_GetVdd(frameData, params);

ptat = (int16_t)frameData[800];

ptatArt = (ptat / (ptat * params->alphaPTAT + (int16_t)frameData[768])) * POW2(18);

ta = (ptatArt / (1 + params->KvPTAT * (vdd - 3.3)) - params->vPTAT25);
ta = ta / params->KtPTAT + 25;

return ta;
}

//------------------------------------------------------------------------------

int MLX90640_GetSubPageNumber(uint16_t *frameData)
{
return frameData[833];

}

//------------------------------------------------------------------------------
void MLX90640_BadPixelsCorrection(uint16_t *pixels, float *to, int mode, paramsMLX90640 *params)
{
float ap[4];
uint8_t pix;
uint8_t line;
uint8_t column;

pix = 0;
while(pixels[pix] != 0xFFFF)
{
line = pixels[pix]>>5;
column = pixels[pix] - (line<<5);

if(mode == 1)
{
if(line == 0)
{
if(column == 0)
{
to[pixels[pix]] = to[33];
}
else if(column == 31)
{
to[pixels[pix]] = to[62];
}
else
{
to[pixels[pix]] = (to[pixels[pix]+31] + to[pixels[pix]+33])/2.0;
}
}
else if(line == 23)
{
if(column == 0)
{
to[pixels[pix]] = to[705];
}
else if(column == 31)
{
to[pixels[pix]] = to[734];
}
else
{
to[pixels[pix]] = (to[pixels[pix]-33] + to[pixels[pix]-31])/2.0;
}
}
else if(column == 0)
{
to[pixels[pix]] = (to[pixels[pix]-31] + to[pixels[pix]+33])/2.0;
}
else if(column == 31)
{
to[pixels[pix]] = (to[pixels[pix]-33] + to[pixels[pix]+31])/2.0;
}
else
{
ap[0] = to[pixels[pix]-33];
ap[1] = to[pixels[pix]-31];
ap[2] = to[pixels[pix]+31];
ap[3] = to[pixels[pix]+33];
to[pixels[pix]] = GetMedian(ap,4);
}
}
else
{
if(column == 0)
{
to[pixels[pix]] = to[pixels[pix]+1];
}
else if(column == 1 || column == 30)
{
to[pixels[pix]] = (to[pixels[pix]-1]+to[pixels[pix]+1])/2.0;
}
else if(column == 31)
{
to[pixels[pix]] = to[pixels[pix]-1];
}
else
{
if(IsPixelBad(pixels[pix]-2,params) == 0 && IsPixelBad(pixels[pix]+2,params) == 0)
{
ap[0] = to[pixels[pix]+1] - to[pixels[pix]+2];
ap[1] = to[pixels[pix]-1] - to[pixels[pix]-2];
if(fabs(ap[0]) > fabs(ap[1]))
{
to[pixels[pix]] = to[pixels[pix]-1] + ap[1];
}
else
{
to[pixels[pix]] = to[pixels[pix]+1] + ap[0];
}
}
else
{
to[pixels[pix]] = (to[pixels[pix]-1]+to[pixels[pix]+1])/2.0;
}
}
}
pix = pix + 1;
}
}

//------------------------------------------------------------------------------

static void ExtractVDDParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int8_t kVdd;
int16_t vdd25;

kVdd = MLX90640_MS_BYTE(eeData[51]);

vdd25 = MLX90640_LS_BYTE(eeData[51]);
vdd25 = ((vdd25 - 256) << 5) - 8192;

mlx90640->kVdd = 32 * kVdd;
mlx90640->vdd25 = vdd25;
}

//------------------------------------------------------------------------------

static void ExtractPTATParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float KvPTAT;
float KtPTAT;
int16_t vPTAT25;
float alphaPTAT;

KvPTAT = (eeData[50] & MLX90640_MSBITS_6_MASK) >> 10;
if(KvPTAT > 31)
{
KvPTAT = KvPTAT - 64;
}
KvPTAT = KvPTAT/4096;

KtPTAT = eeData[50] & MLX90640_LSBITS_10_MASK;
if(KtPTAT > 511)
{
KtPTAT = KtPTAT - 1024;
}
KtPTAT = KtPTAT/8;

vPTAT25 = eeData[49];

alphaPTAT = (eeData[16] & MLX90640_NIBBLE4_MASK) / POW2(14) + 8.0f;

mlx90640->KvPTAT = KvPTAT;
mlx90640->KtPTAT = KtPTAT;
mlx90640->vPTAT25 = vPTAT25;
mlx90640->alphaPTAT = alphaPTAT;
}

//------------------------------------------------------------------------------

static void ExtractGainParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
mlx90640->gainEE = (int16_t)eeData[48];;
}

//------------------------------------------------------------------------------

static void ExtractTgcParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
mlx90640->tgc = (int8_t)MLX90640_LS_BYTE(eeData[60]) / 32.0f;
}

//------------------------------------------------------------------------------

static void ExtractResolutionParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
uint8_t resolutionEE;
resolutionEE = (eeData[56] & 0x3000) >> 12;

mlx90640->resolutionEE = resolutionEE;
}

//------------------------------------------------------------------------------

static void ExtractKsTaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
mlx90640->KsTa = (int8_t)MLX90640_MS_BYTE(eeData[60]) / 8192.0f;
}

//------------------------------------------------------------------------------

static void ExtractKsToParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int32_t KsToScale;
int8_t step;

step = ((eeData[63] & 0x3000) >> 12) * 10;

mlx90640->ct[0] = -40;
mlx90640->ct[1] = 0;
mlx90640->ct[2] = MLX90640_NIBBLE2(eeData[63]);
mlx90640->ct[3] = MLX90640_NIBBLE3(eeData[63]);

mlx90640->ct[2] = mlx90640->ct[2]*step;
mlx90640->ct[3] = mlx90640->ct[2] + mlx90640->ct[3]*step;
mlx90640->ct[4] = 400;

KsToScale = MLX90640_NIBBLE1(eeData[63]) + 8;
KsToScale = 1UL << KsToScale;

mlx90640->ksTo[0] = (int8_t)MLX90640_LS_BYTE(eeData[61]) / (float)KsToScale;
mlx90640->ksTo[1] = (int8_t)MLX90640_MS_BYTE(eeData[61]) / (float)KsToScale;
mlx90640->ksTo[2] = (int8_t)MLX90640_LS_BYTE(eeData[62]) / (float)KsToScale;
mlx90640->ksTo[3] = (int8_t)MLX90640_MS_BYTE(eeData[62]) / (float)KsToScale;
mlx90640->ksTo[4] = -0.0002;
}

//------------------------------------------------------------------------------

static void ExtractAlphaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int accRow[24];
int accColumn[32];
int p = 0;
int alphaRef;
uint8_t alphaScale;
uint8_t accRowScale;
uint8_t accColumnScale;
uint8_t accRemScale;
float alphaTemp[768];
float temp;


accRemScale = MLX90640_NIBBLE1(eeData[32]);
accColumnScale = MLX90640_NIBBLE2(eeData[32]);
accRowScale = MLX90640_NIBBLE3(eeData[32]);
alphaScale = MLX90640_NIBBLE4(eeData[32]) + 30;
alphaRef = eeData[33];

for(int i = 0; i < 6; i++)
{
p = i * 4;
accRow[p + 0] = MLX90640_NIBBLE1(eeData[34 + i]);
accRow[p + 1] = MLX90640_NIBBLE2(eeData[34 + i]);
accRow[p + 2] = MLX90640_NIBBLE3(eeData[34 + i]);
accRow[p + 3] = MLX90640_NIBBLE4(eeData[34 + i]);
}

for(int i = 0; i < MLX90640_LINE_NUM; i++)
{
if (accRow[i] > 7)
{
accRow[i] = accRow[i] - 16;
}
}

for(int i = 0; i < 8; i++)
{
p = i * 4;
accColumn[p + 0] = MLX90640_NIBBLE1(eeData[40 + i]);
accColumn[p + 1] = MLX90640_NIBBLE2(eeData[40 + i]);
accColumn[p + 2] = MLX90640_NIBBLE3(eeData[40 + i]);
accColumn[p + 3] = MLX90640_NIBBLE4(eeData[40 + i]);
}

for(int i = 0; i < MLX90640_COLUMN_NUM; i++)
{
if (accColumn[i] > 7)
{
accColumn[i] = accColumn[i] - 16;
}
}

for(int i = 0; i < MLX90640_LINE_NUM; i++)
{
for(int j = 0; j < MLX90640_COLUMN_NUM; j ++)
{
p = 32 * i +j;
alphaTemp[p] = (eeData[64 + p] & 0x03F0) >> 4;
if (alphaTemp[p] > 31)
{
alphaTemp[p] = alphaTemp[p] - 64;
}
alphaTemp[p] = alphaTemp[p]*(1 << accRemScale);
alphaTemp[p] = (alphaRef + (accRow[i] << accRowScale) + (accColumn[j] << accColumnScale) + alphaTemp[p]);
alphaTemp[p] = alphaTemp[p] / POW2(alphaScale);
alphaTemp[p] = alphaTemp[p] - mlx90640->tgc * (mlx90640->cpAlpha[0] + mlx90640->cpAlpha[1])/2;
alphaTemp[p] = SCALEALPHA/alphaTemp[p];
}
}

temp = alphaTemp[0];
for(int i = 1; i < MLX90640_PIXEL_NUM; i++)
{
if (alphaTemp[i] > temp)
{
temp = alphaTemp[i];
}
}

alphaScale = 0;
while(temp < 32767.4)
{
temp = temp*2;
alphaScale = alphaScale + 1;
}

for(int i = 0; i < MLX90640_PIXEL_NUM; i++)
{
temp = alphaTemp[i] * POW2(alphaScale);
mlx90640->alpha[i] = (temp + 0.5);

}

mlx90640->alphaScale = alphaScale;

}

//------------------------------------------------------------------------------

static void ExtractOffsetParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int occRow[24];
int occColumn[32];
int p = 0;
int16_t offsetRef;
uint8_t occRowScale;
uint8_t occColumnScale;
uint8_t occRemScale;


occRemScale = MLX90640_NIBBLE1(eeData[16]);
occColumnScale = MLX90640_NIBBLE2(eeData[16]);
occRowScale = MLX90640_NIBBLE3(eeData[16]);
offsetRef = (int16_t)eeData[17];

for(int i = 0; i < 6; i++)
{
p = i * 4;
occRow[p + 0] = MLX90640_NIBBLE1(eeData[18 + i]);
occRow[p + 1] = MLX90640_NIBBLE2(eeData[18 + i]);
occRow[p + 2] = MLX90640_NIBBLE3(eeData[18 + i]);
occRow[p + 3] = MLX90640_NIBBLE4(eeData[18 + i]);
}

for(int i = 0; i < MLX90640_LINE_NUM; i++)
{
if (occRow[i] > 7)
{
occRow[i] = occRow[i] - 16;
}
}

for(int i = 0; i < 8; i++)
{
p = i * 4;
occColumn[p + 0] = MLX90640_NIBBLE1(eeData[24 + i]);
occColumn[p + 1] = MLX90640_NIBBLE2(eeData[24 + i]);
occColumn[p + 2] = MLX90640_NIBBLE3(eeData[24 + i]);
occColumn[p + 3] = MLX90640_NIBBLE4(eeData[24 + i]);
}

for(int i = 0; i < MLX90640_COLUMN_NUM; i ++)
{
if (occColumn[i] > 7)
{
occColumn[i] = occColumn[i] - 16;
}
}

for(int i = 0; i < MLX90640_LINE_NUM; i++)
{
for(int j = 0; j < MLX90640_COLUMN_NUM; j ++)
{
p = 32 * i +j;
mlx90640->offset[p] = (eeData[64 + p] & MLX90640_MSBITS_6_MASK) >> 10;
if (mlx90640->offset[p] > 31)
{
mlx90640->offset[p] = mlx90640->offset[p] - 64;
}
mlx90640->offset[p] = mlx90640->offset[p]*(1 << occRemScale);
mlx90640->offset[p] = (offsetRef + (occRow[i] << occRowScale) + (occColumn[j] << occColumnScale) + mlx90640->offset[p]);
}
}
}

//------------------------------------------------------------------------------

static void ExtractKtaPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int p = 0;
int8_t KtaRC[4];
uint8_t ktaScale1;
uint8_t ktaScale2;
uint8_t split;
float ktaTemp[768];
float temp;

KtaRC[0] = (int8_t)MLX90640_MS_BYTE(eeData[54]);;
KtaRC[2] = (int8_t)MLX90640_LS_BYTE(eeData[54]);;
KtaRC[1] = (int8_t)MLX90640_MS_BYTE(eeData[55]);;
KtaRC[3] = (int8_t)MLX90640_LS_BYTE(eeData[55]);;

ktaScale1 = MLX90640_NIBBLE2(eeData[56]) + 8;
ktaScale2 = MLX90640_NIBBLE1(eeData[56]);

for(int i = 0; i < MLX90640_LINE_NUM; i++)
{
for(int j = 0; j < MLX90640_COLUMN_NUM; j ++)
{
p = 32 * i +j;
split = 2*(p/32 - (p/64)*2) + p%2;
ktaTemp[p] = (eeData[64 + p] & 0x000E) >> 1;
if (ktaTemp[p] > 3)
{
ktaTemp[p] = ktaTemp[p] - 8;
}
ktaTemp[p] = ktaTemp[p] * (1 << ktaScale2);
ktaTemp[p] = KtaRC[split] + ktaTemp[p];
ktaTemp[p] = ktaTemp[p] / POW2(ktaScale1);

}
}

temp = fabs(ktaTemp[0]);
for(int i = 1; i < MLX90640_PIXEL_NUM; i++)
{
if (fabs(ktaTemp[i]) > temp)
{
temp = fabs(ktaTemp[i]);
}
}

ktaScale1 = 0;
while(temp < 63.4)
{
temp = temp*2;
ktaScale1 = ktaScale1 + 1;
}

for(int i = 0; i < MLX90640_PIXEL_NUM; i++)
{
temp = ktaTemp[i] * POW2(ktaScale1);
if (temp < 0)
{
mlx90640->kta[i] = (temp - 0.5);
}
else
{
mlx90640->kta[i] = (temp + 0.5);
}

}

mlx90640->ktaScale = ktaScale1;
}


//------------------------------------------------------------------------------

static void ExtractKvPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
int p = 0;
int8_t KvT[4];
int8_t KvRoCo;
int8_t KvRoCe;
int8_t KvReCo;
int8_t KvReCe;
uint8_t kvScale;
uint8_t split;
float kvTemp[768];
float temp;

KvRoCo = MLX90640_NIBBLE4(eeData[52]);
if (KvRoCo > 7)
{
KvRoCo = KvRoCo - 16;
}
KvT[0] = KvRoCo;

KvReCo = MLX90640_NIBBLE3(eeData[52]);
if (KvReCo > 7)
{
KvReCo = KvReCo - 16;
}
KvT[2] = KvReCo;

KvRoCe = MLX90640_NIBBLE2(eeData[52]);
if (KvRoCe > 7)
{
KvRoCe = KvRoCe - 16;
}
KvT[1] = KvRoCe;

KvReCe = MLX90640_NIBBLE1(eeData[52]);
if (KvReCe > 7)
{
KvReCe = KvReCe - 16;
}
KvT[3] = KvReCe;

kvScale = MLX90640_NIBBLE3(eeData[56]);


for(int i = 0; i < MLX90640_LINE_NUM; i++)
{
for(int j = 0; j < MLX90640_COLUMN_NUM; j ++)
{
p = 32 * i +j;
split = 2*(p/32 - (p/64)*2) + p%2;
kvTemp[p] = KvT[split];
kvTemp[p] = kvTemp[p] / POW2(kvScale);
}
}

temp = fabs(kvTemp[0]);
for(int i = 1; i < MLX90640_PIXEL_NUM; i++)
{
if (fabs(kvTemp[i]) > temp)
{
temp = fabs(kvTemp[i]);
}
}

kvScale = 0;
while(temp < 63.4)
{
temp = temp*2;
kvScale = kvScale + 1;
}

for(int i = 0; i < MLX90640_PIXEL_NUM; i++)
{
temp = kvTemp[i] * POW2(kvScale);
if (temp < 0)
{
mlx90640->kv[i] = (temp - 0.5);
}
else
{
mlx90640->kv[i] = (temp + 0.5);
}

}

mlx90640->kvScale = kvScale;
}

//------------------------------------------------------------------------------

static void ExtractCPParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float alphaSP[2];
int16_t offsetSP[2];
float cpKv;
float cpKta;
uint8_t alphaScale;
uint8_t ktaScale1;
uint8_t kvScale;

alphaScale = MLX90640_NIBBLE4(eeData[32]) + 27;

offsetSP[0] = (eeData[58] & MLX90640_LSBITS_10_MASK);
if (offsetSP[0] > 511)
{
offsetSP[0] = offsetSP[0] - 1024;
}

offsetSP[1] = (eeData[58] & MLX90640_MSBITS_6_MASK) >> 10;
if (offsetSP[1] > 31)
{
offsetSP[1] = offsetSP[1] - 64;
}
offsetSP[1] = offsetSP[1] + offsetSP[0];

alphaSP[0] = (eeData[57] & MLX90640_LSBITS_10_MASK);
if (alphaSP[0] > 511)
{
alphaSP[0] = alphaSP[0] - 1024;
}
alphaSP[0] = alphaSP[0] / POW2(alphaScale);

alphaSP[1] = (eeData[57] & MLX90640_MSBITS_6_MASK) >> 10;
if (alphaSP[1] > 31)
{
alphaSP[1] = alphaSP[1] - 64;
}
alphaSP[1] = (1 + alphaSP[1]/128) * alphaSP[0];

cpKta = (int8_t)MLX90640_LS_BYTE(eeData[59]);

ktaScale1 = MLX90640_NIBBLE2(eeData[56]) + 8;
mlx90640->cpKta = cpKta / POW2(ktaScale1);

cpKv = (int8_t)MLX90640_MS_BYTE(eeData[59]);

kvScale = MLX90640_NIBBLE3(eeData[56]);
mlx90640->cpKv = cpKv / POW2(kvScale);

mlx90640->cpAlpha[0] = alphaSP[0];
mlx90640->cpAlpha[1] = alphaSP[1];
mlx90640->cpOffset[0] = offsetSP[0];
mlx90640->cpOffset[1] = offsetSP[1];
}

//------------------------------------------------------------------------------

static void ExtractCILCParameters(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
float ilChessC[3];
uint8_t calibrationModeEE;

calibrationModeEE = (eeData[10] & 0x0800) >> 4;
calibrationModeEE = calibrationModeEE ^ 0x80;

ilChessC[0] = (eeData[53] & 0x003F);
if (ilChessC[0] > 31)
{
ilChessC[0] = ilChessC[0] - 64;
}
ilChessC[0] = ilChessC[0] / 16.0f;

ilChessC[1] = (eeData[53] & 0x07C0) >> 6;
if (ilChessC[1] > 15)
{
ilChessC[1] = ilChessC[1] - 32;
}
ilChessC[1] = ilChessC[1] / 2.0f;

ilChessC[2] = (eeData[53] & 0xF800) >> 11;
if (ilChessC[2] > 15)
{
ilChessC[2] = ilChessC[2] - 32;
}
ilChessC[2] = ilChessC[2] / 8.0f;

mlx90640->calibrationModeEE = calibrationModeEE;
mlx90640->ilChessC[0] = ilChessC[0];
mlx90640->ilChessC[1] = ilChessC[1];
mlx90640->ilChessC[2] = ilChessC[2];
}

//------------------------------------------------------------------------------

static int ExtractDeviatingPixels(uint16_t *eeData, paramsMLX90640 *mlx90640)
{
uint16_t pixCnt = 0;
uint16_t brokenPixCnt = 0;
uint16_t outlierPixCnt = 0;
int warn = 0;
int i;

for(pixCnt = 0; pixCnt<5; pixCnt++)
{
mlx90640->brokenPixels[pixCnt] = 0xFFFF;
mlx90640->outlierPixels[pixCnt] = 0xFFFF;
}

pixCnt = 0;
while (pixCnt < MLX90640_PIXEL_NUM && brokenPixCnt < 5 && outlierPixCnt < 5)
{
if(eeData[pixCnt+64] == 0)
{
mlx90640->brokenPixels[brokenPixCnt] = pixCnt;
brokenPixCnt = brokenPixCnt + 1;
}
else if((eeData[pixCnt+64] & 0x0001) != 0)
{
mlx90640->outlierPixels[outlierPixCnt] = pixCnt;
outlierPixCnt = outlierPixCnt + 1;
}

pixCnt = pixCnt + 1;

}

if(brokenPixCnt > 4)
{
warn = -MLX90640_BROKEN_PIXELS_NUM_ERROR;
}
else if(outlierPixCnt > 4)
{
warn = -MLX90640_OUTLIER_PIXELS_NUM_ERROR;
}
else if((brokenPixCnt + outlierPixCnt) > 4)
{
warn = -MLX90640_BAD_PIXELS_NUM_ERROR;
}
else
{
for(pixCnt=0; pixCnt<brokenPixCnt; pixCnt++)
{
for(i=pixCnt+1; i<brokenPixCnt; i++)
{
warn = CheckAdjacentPixels(mlx90640->brokenPixels[pixCnt],mlx90640->brokenPixels[i]);
if(warn != 0)
{
return warn;
}
}
}

for(pixCnt=0; pixCnt<outlierPixCnt; pixCnt++)
{
for(i=pixCnt+1; i<outlierPixCnt; i++)
{
warn = CheckAdjacentPixels(mlx90640->outlierPixels[pixCnt],mlx90640->outlierPixels[i]);
if(warn != 0)
{
return warn;
}
}
}

for(pixCnt=0; pixCnt<brokenPixCnt; pixCnt++)
{
for(i=0; i<outlierPixCnt; i++)
{
warn = CheckAdjacentPixels(mlx90640->brokenPixels[pixCnt],mlx90640->outlierPixels[i]);
if(warn != 0)
{
return warn;
}
}
}

}


return warn;

}

//------------------------------------------------------------------------------

static int CheckAdjacentPixels(uint16_t pix1, uint16_t pix2)
{

int pixPosDif;
uint16_t lp1 = pix1 >> 5;
uint16_t lp2 = pix2 >> 5;
uint16_t cp1 = pix1 - (lp1 << 5);
uint16_t cp2 = pix2 - (lp2 << 5);

pixPosDif = lp1 - lp2;
if(pixPosDif > -2 && pixPosDif < 2)
{
pixPosDif = cp1 - cp2;
if(pixPosDif > -2 && pixPosDif < 2)
{
return -6;
}

}

return 0;
}

//------------------------------------------------------------------------------

static float GetMedian(float *values, int n)
{
float temp;

for(int i=0; i<n-1; i++)
{
for(int j=i+1; j<n; j++)
{
if(values[j] < values[i])
{
temp = values[i];
values[i] = values[j];
values[j] = temp;
}
}
}

if(n%2==0)
{
return ((values[n/2] + values[n/2 - 1]) / 2.0);

}
else
{
return values[n/2];
}

}

//------------------------------------------------------------------------------

static int IsPixelBad(uint16_t pixel,paramsMLX90640 *params)
{
for(int i=0; i<5; i++)
{
if(pixel == params->outlierPixels[i] || pixel == params->brokenPixels[i])
{
return 1;
}
}

return 0;
}

//------------------------------------------------------------------------------